7 research outputs found

    Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

    Get PDF
    We prove that the computation of a combinatorial shortest path between two vertices of a graph associahedron, introduced by Carr and Devadoss, is NP-hard. This resolves an open problem raised by Cardinal. A graph associahedron is a generalization of the well-known associahedron. The associahedron is obtained as the graph associahedron of a path. It is a tantalizing and important open problem in theoretical computer science whether the computation of a combinatorial shortest path between two vertices of the associahedron can be done in polynomial time, which is identical to the computation of the flip distance between two triangulations of a convex polygon, and the rotation distance between two rooted binary trees. Our result shows that a certain generalized approach to tackling this open problem is not promising. As a corollary of our theorem, we prove that the computation of a combinatorial shortest path between two vertices of a polymatroid base polytope cannot be done in polynomial time unless P = NP. Since a combinatorial shortest path on the matroid base polytope can be computed in polynomial time, our result reveals an unexpected contrast between matroids and polymatroids

    Reconfiguration of Colorings in Triangulations of the Sphere

    Get PDF
    In 1973, Fisk proved that any 4-coloring of a 3-colorable triangulation of the 2-sphere can be obtained from any 3-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there exists a 4-coloring that cannot be obtained from any 3-coloring. In this paper, we present a linear-time checkable characterization of a 4-coloring of a 3-colorable triangulation of the 2-sphere that can be obtained from a 3-coloring by a sequence of recoloring operations at single vertices. In addition, we develop a quadratic-time algorithm to find such a recoloring sequence if it exists; our proof implies that we can always obtain a quadratic length recoloring sequence. We also present a linear-time checkable criterion for a 3-colorable triangulation of the 2-sphere that all 4-colorings can be obtained from a 3-coloring by such a sequence. Moreover, we consider a high-dimensional setting. As a natural generalization of our first result, we obtain a polynomial-time checkable characterization of a k-coloring of a (k-1)-colorable triangulation of the (k-2)-sphere that can be obtained from a (k-1)-coloring by a sequence of recoloring operations at single vertices and the corresponding algorithmic result. Furthermore, we show that the problem of deciding whether, for given two (k+1)-colorings of a (k-1)-colorable triangulation of the (k-2)-sphere, one can be obtained from the other by such a sequence is PSPACE-complete for any fixed k ? 4. Our results above can be rephrased as new results on the computational problems named k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph, which are fundamental problems in the field of combinatorial reconfiguration

    Reconfiguration of Time-Respecting Arborescences

    Full text link
    An arborescence, which is a directed analogue of a spanning tree in an undirected graph, is one of the most fundamental combinatorial objects in a digraph. In this paper, we study arborescences in digraphs from the viewpoint of combinatorial reconfiguration, which is the field where we study reachability between two configurations of some combinatorial objects via some specified operations. Especially, we consider reconfiguration problems for time-respecting arborescences, which were introduced by Kempe, Kleinberg, and Kumar. We first prove that if the roots of the initial and target time-respecting arborescences are the same, then the target arborescence is always reachable from the initial one and we can find a shortest reconfiguration sequence in polynomial time. Furthermore, we show if the roots are not the same, then the target arborescence may not be reachable from the initial one. On the other hand, we show that we can determine whether the target arborescence is reachable form the initial one in polynomial time. Finally, we prove that it is NP-hard to find a shortest reconfiguration sequence in the case where the roots are not the same. Our results show an interesting contrast to the previous results for (ordinary) arborescences reconfiguration problems.Comment: 13 pages, 3 figures, WADS 202

    Rerouting Planar Curves and Disjoint Paths

    Get PDF
    In this paper, we consider a transformation of k disjoint paths in a graph. For a graph and a pair of k disjoint paths ? and ? connecting the same set of terminal pairs, we aim to determine whether ? can be transformed to ? by repeatedly replacing one path with another path so that the intermediates are also k disjoint paths. The problem is called Disjoint Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when k = 2. On the other hand, we prove that, when the graph is embedded on a plane and all paths in ? and ? connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is based on a topological characterization for rerouting curves on a plane using the algebraic intersection number. We also consider a transformation of disjoint s-t paths as a variant. We show that the disjoint s-t paths reconfiguration problem in planar graphs can be determined in polynomial time, while the problem is PSPACE-complete in general

    Maximum properly colored trees in edge-colored graphs

    No full text
    International audienc

    On 3-polytopes with non-Hamiltonian prisms

    No full text
    Ĺ pacapan recently showed that there exist 3-polytopes with non-Hamiltonian prisms, disproving a conjecture of Rosenfeld and Barnette. By adapting Ĺ pacapan's approach we strengthen his result in several directions. We prove that there exists an infinite family of counterexamples to the Rosenfeld-Barnette conjecture, each member of which has maximum degree 37, is of girth 4, and contains no odd-length face with length less than k for a given odd integer k. We also show that for any given 3-polytope H there is a counterexample containing H as an induced subgraph. This yields an infinite family of non-Hamiltonian 4-polytopes in which the proportion of quartic vertices tends to 1. However, Barnette's conjecture stating that every 4-polytope in which all vertices are quartic is Hamiltonian still stands. Finally, we prove that the GrĂĽnbaum-Walther shortness coefficient of the family of all prisms of 3-polytopes is at most 59/60
    corecore